
Product brief

Zero Overhead Instrumentation with Rapi-

Time

RapiTime (part of Rapita Verification Suite, RVS)

uniquely provides analysis of timing and code

coverage from target measurements. Key to its

approach is instrumentation of the source code. A

new enhancement is the abi l i ty for cer tain

development environments to instrument source

code without additional instructions being added into

the object code - zero overhead instrumentation.

Introduction to RapiTime

R a p i T i m e i s a n a u t o m a t e d p e r f o r m a n c e

measurement and timing analysis tool. Targeted at

real-t ime, embedded applications, RapiTime

provides code coverage metrics, performance

measurement, determination of worst-case execution

time (WCET), and guidance for optimization efforts.

In general terms RapiTime works as follows:

 As the application is executed on the target, an

execution trace is collected. This trace is a

sequence of time-stamped values that show

which parts of the application are executed.

 RapiTime identifies the parts of the source code

have and have not been executed (code

coverage), and performance metrics for each

part of executed code.

 Using the performance and coverage data,

RapiTime can also predict WCET, and identify

the best locations for optimization.

The execution trace is created by instrumenting the

source code with expressions (instrumentation

points, or Ipoints) that indicate that a specific section

of code has been executed. On many platforms the

code for the instrumentation can be implemented

with as few as one machine instruction per

instrumentation point, thus leaving a very small

overhead. However, there are situations where even

a small overhead is undesirable (see “Why no

instrumentation?”, overleaf).

Zero overhead instrumentation

In some situations it is possible to provide “zero

overhead instrumentation”. Although this approach

does insert Ipoints into the source code, they are

labels only. This means no additional code appears

in the executable.

Two key technologies are required to make this work:

 Compiler support for mapping labels at source

code level to memory locations.

 Debugger/data logger support for collecting a

time-stamped trace of locations of code

statements executed.

The sidebar on the next page shows tools

compatible with zero overhead instrumentation.

How it works

Figure 1 shows the zero overhead instrumentation

process. The steps in the process are as follows:

1. RapiTime inserts Ipoints into the source code

(“Instrument”).

2. The build process expands Ipoints to labels in

the object file at build time (“Build”)

3. R a p i t a ’ s s u p p o r t f o r z e r o o v e r h e a d

instrumentation automatically updates the

structural model to use the memory locations of

Document Id: MC-PB-004-41

Figure 1: Zero Overhead Instrumentation

the labels instead of Ipoint IDs (“Map Ipoints to

locations”)

4. The appl icat ion is executed wi th some

technology for recording a timestamped trace of

locations of executed instructions (“Run on

target”)

5. RapiTime combines the trace file with the

structure to produce a report (“Analysis”).

Why no instrumentation?

Inserting a small amount of code into an application

to implement instrumentation usually provides an

excellent analysis solution. RapiTime’s analysis can

even compensate for the slight increase in time

required to execute instrumentation. However there

are cases where even this cannot be tolerated. Two

examples of this are:

Critical applications. Inserting instrumentation

code into the application for measurement purposes

introduces the remote possibility of different

behavior between measured and deployed code.

Development processes for high integrity systems

(e.g. DO-178B for avionics) require you to prove that

this does not occur. Typically this is achieved by

running tests twice:

 Once w i th ins t rumenta t ion , to per fo rm

measurements.

 Once without instrumentation, to prove that the

application’s behavior is unaffected by the

instrumentation.

With zero overhead instrumentation, it is possible to

d e p l o y t h e s a m e c o d e t h a t i s u s e d f o r

measurements, avoiding the need for duplicated

tests.

Memory limited applications. In some situations

there is very little additional room for new code. In

these situations, even the small increase due to

instrumentation code is undesirable.

Summary

Zero overhead instrumentation gives you all of the

benefits of RapiTime’s analysis without introducing

instrumentation code into your application.

Not every environment supports zero overhead

instrumentation. However, where your development

environment does support it, Rapita Systems will be

pleased to provide a RapiTime integration service

or to support your own integration activity to make

use of zero overhead instrumentation. Please

contact us for further information.

About Rapita Systems

Rapita Systems Ltd provides customized on-target

verification solutions which reduce the cost of

measuring and optimizing the timing performance of

large, real-time software systems in the avionics and

automotive electronics markets.

RVS, which includes RapiTime and RapiCover, is

the essential col lect ion of on-target t iming

verification, optimization and code coverage

measurement tools for real -t ime embedded

systems. It is the only product on the market that

can tell users exactly where to focus optimization

effort to minimize WCET.

Using RVS, customers have cut the worst-case

execution time of large scale, legacy applications by

up to 50% with only a few days effort, and

significantly reduced unnecessary testing and

instrumentation overheads.

Our software supports Microsoft Windows (XP,

2000, Vista and Windows 7) and Linux.

The zero overhead instrumentation concept was

developed in MERASA, a research project funded

by the 7th European Framework Programme (FP7)

under contract no 216415. More information can be

found at http://www.merasa.org/

Supported technologies

Compiler. Zero overhead instrumentation will work with

any compiler that can:

 Insert assembly labels at source level (for example

using inline assembly strings);

 Provide somewhere that the address of located

labels can be extracted from (e.g. map or ELF

files).

Rapita Systems is developing support for specific

compilers. Please contact us for information.

Debugger/Data Logger. Zero overhead

instrumentation can be implemented with the following

debugger/data logger solutions:

 iSYSTEM TraceGT debugger connected to CPUs

with Nexus or ARM ETM;

 Lauterbach PowerTrace debugger connected to

CPUs with Nexus or ARM ETM;

 Rapita Systems RTBx data logger or Logic Analyzer

connected to the address bus of a CPU without on-

chip program cache;

 CPU simulator with support for time stamped

instruction trace.

Document Id: MC-PB-004-41

Atlas House

Osbaldwick Link Road

York

YO10 3JB

United Kingdom

Tel No: +44 (0)1904 413945

Email: enquiries@rapitasystems.com

Website: www.rapitasystems.com

Registered in England & Wales 5011090

China www.cinawind.com

Germany www.embedded-tools.de

India www.spundhan.com

Japan www.aicp.co.jp

Korea www.rapitasystems.co.kr

